四型 Transforming Linear Functions

Fill in each blank with translation, rotation, or reflection.

- 1. A ______ is like a *turn*.
- 2. A ______ is like a *slide*.
- 3. A ______ is like a flip.

Graph f(x) and g(x). Then describe the transformation(s) from the graph of f(x) to the graph of g(x).

5.
$$f(x) = 2x - 1$$
; $g(x) = 4x - 1$

6.
$$f(x) = x$$
; $g(x) = \frac{1}{2}x - 7$

- 7. The cost of making a ceramic picture frame at a paint-your-own pottery store is \$12, plus \$5 per hour while you paint. The total cost for the frame that you spend x hours painting is f(x) = 5x + 12.
 - a. How will the graph of this function change if the cost of the frame is raised to \$15?
 - b. How will the graph of this function change if the hourly charge is lowered to \$4?

LESSON Practice B

Transforming Linear Functions

Graph f(x) and g(x). Then describe the transformation from the graph of f(x) to the graph of g(x).

1.
$$f(x) = x$$
; $g(x) = x + 3$

2.
$$f(x) = \frac{1}{3}x - 4$$
; $g(x) = \frac{1}{4}x - 4$

3.
$$f(x) = x$$
; $g(x) = 2x - 5$

4. Graph f(x) = -3x + 1. Then reflect the graph of f(x) across the y-axis. Write a function g(x)to describe the new graph.

