Graded Classwork

Name

Date Due Friday 2/10/1-

Multiplication properties of exponents

Working with Powers, Exponents, and ties: Polynomials

When multiplying exponents, it is important to remember the following properties:

- 1. When multiplying powers having the same base, add the exponents, keeping the same base. (Remember: a^3 , a is the base, 3 is the exponent, and a^3 is the power.) For example, $x^3 \cdot x^5 = x^{3+5} = x^8$.
- 2. When finding a power of a power, multiply the exponents. For example, $(x^3)^2 = x^6$.
- 3. When finding the power of a product, find the power of each factor and multiply. For example, $(x \cdot y)^2 = x^2 \cdot y^2$.

Simplify
$$(5x^3)^2(xy)^3$$

 $(5^2x^6)(x^3y^3)$
= $25x^4y^3$

Simplify
$$(2x^4)^3(-x^2)^3$$

 $(2^3x^{12})(-x^6)$
= $-8x^{18}$

- 1. What do you do with the exponents when multiplying powers that have the same base?
- 2. Label the base, the exponent, and the power in x^3 .
- 3. Explain what you are to do when finding the power of a product.

Simplify each expression.

4.
$$3x \cdot x^2$$

5.
$$(-6xy)^2(x^2y)^3$$

6.
$$(4z^4)^2(2x^2y)(-3xy^3z^5)$$

7.
$$-4x^4 \cdot x^3$$

8.
$$(4x^3y^2)^3(-2x^2y^4)$$

9.
$$(3x)^2(2x^3y^6)(-5x^6y^2)$$

10.
$$(-x^2)(-x)^2$$

11.
$$-xy(-xy)^2$$

12.
$$(3x^3)(5x^5)$$

13.
$$(-2x^3y^3z)^4(2xyz^4)^2$$

Division properties of exponents

Working with Powers, Exponents, and S: Polynomials

When dividing exponents, it is important to remember the following properties:

When dividing powers that have the same base, subtract the exponents.

For example, $\frac{x^4}{x^2} = x^{4-2} = x^2$, where x cannot be equal to 0.

2. When finding a power of a quotient, find the power of the numerator and the power of the denominator and divide.

For example, $(\frac{x}{y})^3 = \frac{x^3}{y^3}$, where y cannot be equal to 0.

Simplify
$$\frac{6^8}{6^6}$$

= $6^8 - 6$
= $6^2 = 36$

Simplify
$$(\frac{3}{4})^{-2}$$

= $\frac{3^{-2}}{4^{-2}}$
= $\frac{4^2}{3^2}$ = $\frac{16}{4}$

1. Explain what you do with the exponents when dividing powers that have the same base.

Evaluate each expression.

2.
$$\frac{5^6}{5^3}$$

3.
$$\frac{(-3)^2}{3^2}$$

4.
$$\frac{3^2}{3^{14}}$$

5.
$$\frac{5^4 \cdot 5}{5^7}$$

6.
$$(\frac{3}{2})^3$$

7.
$$\frac{7^3}{7}$$

8.
$$\frac{4^8}{4^8}$$

9.
$$\frac{6^4 \cdot 6^3}{6^5}$$

10.
$$(\frac{4}{5})^2$$

11.
$$(\frac{-3}{4})^{-2}$$

Simplify each expression.

12.
$$(\frac{3}{r})^3$$

13.
$$x^5 \cdot \frac{1}{x'}$$

14.
$$\frac{18x^4y^2}{-6x^2y^4}$$
 • $\frac{-3x^2y^2}{-y}$

15.
$$\frac{x^3}{x^5}$$

16.
$$\frac{4x^4y^4}{4x^2y^2}$$
 • $\frac{4x^2y^4}{2xy}$

17.
$$\frac{7x^{-3}y^3}{x^2y^{-3}}$$
 • $\frac{(2x^3y)^{-2}}{x^2y^2}$

18.
$$x^4 \cdot \frac{1}{x^2}$$

19.
$$\frac{6x^2y^4}{3y^2}$$
 • $\frac{7x^2y^{-4}}{y^4}$

20.
$$\frac{8x^{-2}y^4}{x^3y^{-3}}$$
 • $\frac{(4xy^2)^{-1}}{x^{-2}y^{-2}}$